Insulin receptor substrate 2 plays diverse cell-specific roles in the regulation of glucose transport.
نویسندگان
چکیده
The insulin receptor substrate 2 (IRS-2) protein is one of the major insulin-signaling substrates. In the present study, we investigated the role of IRS-2 in skin epidermal keratinocytes and dermal fibroblasts. Although skin is not a classical insulin target tissue, we have previously demonstrated that insulin, via the insulin receptor, is essential for normal skin cell physiology. To identify the role of IRS-2 in skin cells, we studied cells isolated from IRS-2 knock-out (KO) mice. Whereas proliferation and differentiation were not affected in the IRS-2 KO cells, a striking effect was observed on glucose transport. In IRS-2 KO keratinocytes, the lack of IRS-2 resulted in a dramatic increase in basal and insulin-stimulated glucose transport. The increase in glucose transport was associated with an increase in total phosphatidylinositol (PI) 3-kinase and Akt activation. In contrast, fibroblasts lacking IRS-2 exhibited a significant decrease in basal and insulin-induced glucose transport. We identified the point of divergence, leading to these differences between keratinocytes and fibroblasts, at the IRS-PI 3-kinase association step. In epidermal keratinocytes, PI 3-kinase is associated with and activated by only the IRS-1 protein. On the other hand, in dermal fibroblasts, PI 3-kinase is exclusively associated with and activated by the IRS-2 protein. These observations suggest that IRS-2 functions as a negative or positive regulator of glucose transport in a cell-specific manner. Our results also show that IRS-2 function depends on its cell-specific association with PI 3-kinase.
منابع مشابه
Insulin receptor substrate 2 ( IRS - 2 ) plays diverse cell - specific roles in the regulation of glucose transport
The insulin receptor substrate 2 (IRS-2) protein is one of the major insulinsignaling substrates. In the present study, we investigated the role of IRS-2 in skin epidermal keratinocytes and dermal fibroblasts. Even though skin is not a classical insulin target tissue, we have previously demonstrated that insulin, via the insulin receptor (IR), is essential for normal skin cell physiology. To id...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملPositive and negative regulation of glucose uptake by hyperosmotic stress.
This review will provide insight on the current understanding of the intracellular signaling mechanisms by which hyperosmolarity mimics insulin responses such as Glut 4 translocation and glucose transport but also antagonizes insulin effects. Glucose uptake induced by insulin is largely dependent on the PI 3-kinase/PKB pathway. In both adipocyte and muscle cells, hyperosmolarity promotes glucos...
متن کاملInvited Review HIGHLIGHTED TOPIC Role of Exercise in Reducing the Risk of Diabetes and Obesity Contraction signaling to glucose transport in skeletal muscle
Jessen, Niels, and Laurie J. Goodyear. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 99: 330–337, 2005; doi:10.1152/ japplphysiol.00175.2005.—Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 15 شماره
صفحات -
تاریخ انتشار 2005